最新公告
  • 欢迎您光临源码库,本站秉承服务宗旨 履行“站长”责任,销售只是起点 服务永无止境!立即加入
  • Spark MLlib机器学习:算法、源码及实战详解

    资源名称:Spark MLlib机器学习:算法、源码及实战详解 

    内容简介:

    《Spark MLlib机器学习:算法、源码及实战详解》以Spark 1.4.1版本源码为切入点,全面并且深入地解析Spark MLlib模块,着力于探索分布式机器学习的底层实现。

    《Spark MLlib机器学习:算法、源码及实战详解》中本着循序渐进的原则,首先解析MLlib的底层实现基础:数据操作及矩阵向量计算操作,该部分是MLlib实现的基础;接着对各个机器学习算法的理论知识进行讲解,并且解析机器学习算法如何在MLlib中实现分布式计算;然后对MLlib源码进行详细的讲解;最后进行MLlib实例的讲解。相信通过《Spark MLlib机器学习:算法、源码及实战详解》的学习,读者可全面掌握Spark MLlib机器学习,能够进行MLlib实战、MLlib定制开发等。

    《Spark MLlib机器学习:算法、源码及实战详解》适合大数据、Spark、数据挖掘领域的从业人员阅读,同时也为Spark开发者和大数据爱好者展现了分布式机器学习的原理和实现细节。

    资源目录:

    第一部分 Spark MLlib基础

    第1章 Spark机器学习简介 2

    1.1 机器学习介绍 2

    1.2 Spark介绍 3

    1.3 Spark MLlib介绍 4

    第2章 Spark数据操作 6

    2.1 Spark RDD操作 6

    2.1.1 Spark RDD创建操作 6

    2.1.2 Spark RDD转换操作 7

    2.1.3 Spark RDD行动操作 14

    2.2 MLlib Statistics统计操作 15

    2.2.1 列统计汇总 15

    2.2.2 相关系数 16

    2.2.3 假设检验 18

    2.3 MLlib数据格式 18

    2.3.1 数据处理 18

    2.3.2 生成样本 22

    第3章 Spark MLlib矩阵向量 26

    3.1 Breeze介绍 26

    3.1.1 Breeze创建函数 27

    3.1.2 Breeze元素访问及操作函数 29

    3.1.3 Breeze数值计算函数 34

    3.1.4 Breeze求和函数 35

    3.1.5 Breeze布尔函数 36

    3.1.6 Breeze线性代数函数 37

    3.1.7 Breeze取整函数 39

    3.1.8 Breeze常量函数 40

    3.1.9 Breeze复数函数 40

    3.1.10 Breeze三角函数 40

    3.1.11 Breeze对数和指数函数 40

    3.2 BLAS介绍 41

    3.2.1 BLAS向量-向量运算 42

    3.2.2 BLAS矩阵-向量运算 42

    3.2.3 BLAS矩阵-矩阵运算 43

    3.3 MLlib向量 43

    3.3.1 MLlib向量介绍 43

    3.3.2 MLlib Vector接口 44

    3.3.3 MLlib DenseVector类 46

    3.3.4 MLlib SparseVector类 49

    3.3.5 MLlib Vectors伴生对象 50

    3.4 MLlib矩阵 57

    3.4.1 MLlib矩阵介绍 57

    3.4.2 MLlib Matrix接口 57

    3.4.3 MLlib DenseMatrix类 59

    3.4.4 MLlib SparseMatrix类 64

    3.4.5 MLlib Matrix伴生对象 71

    3.5 MLlib BLAS 77

    3.6 MLlib分布式矩阵 93

    3.6.1 MLlib分布式矩阵介绍 93

    3.6.2 行矩阵(RowMatrix) 94

    3.6.3 行索引矩阵(IndexedRowMatrix) 96

    3.6.4 坐标矩阵(CoordinateMatrix) 97

    3.6.5 分块矩阵(BlockMatrix) 98

    第二部分 Spark MLlib回归算法

    第4章 Spark MLlib线性回归算法 102

    4.1 线性回归算法 102

    4.1.1 数学模型 102

    4.1.2 最小二乘法 105

    4.1.3 梯度下降算法 105

    4.2 源码分析 106

    4.2.1 建立线性回归 108

    4.2.2 模型训练run方法 111

    4.2.3 权重优化计算 114

    4.2.4 线性回归模型 121

    4.3 实例 123

    4.3.1 训练数据 123

    4.3.2 实例代码 123

    第5章 Spark MLlib逻辑回归算法 126

    5.1 逻辑回归算法 126

    5.1.1 数学模型 126

    5.1.2 梯度下降算法 128

    5.1.3 正则化 129

    5.2 源码分析 132

    5.2.1 建立逻辑回归 134

    5.2.2 模型训练run方法 137

    5.2.3 权重优化计算 137

    5.2.4 逻辑回归模型 144

    5.3 实例 148

    5.3.1 训练数据 148

    5.3.2 实例代码 148

    第6章 Spark MLlib保序回归算法 151

    6.1 保序回归算法 151

    6.1.1 数学模型 151

    6.1.2 L2保序回归算法 153

    6.2 源码分析 153

    6.2.1 建立保序回归 154

    6.2.2 模型训练run方法 156

    6.2.3 并行PAV计算 156

    6.2.4 PAV计算 157

    6.2.5 保序回归模型 159

    6.3 实例 164

    6.3.1 训练数据 164

    6.3.2 实例代码 164

    第三部分 Spark MLlib分类算法

    第7章 Spark MLlib贝叶斯分类算法 170

    7.1 贝叶斯分类算法 170

    7.1.1 贝叶斯定理 170

    7.1.2 朴素贝叶斯分类 171

    7.2 源码分析 173

    7.2.1 建立贝叶斯分类 173

    7.2.2 模型训练run方法 176

    7.2.3 贝叶斯分类模型 179

    7.3 实例 181

    7.3.1 训练数据 181

    7.3.2 实例代码 182

    第8章 Spark MLlib SVM支持向量机算法 184

    8.1 SVM支持向量机算法 184

    8.1.1 数学模型 184

    8.1.2 拉格朗日 186

    8.2 源码分析 189

    8.2.1 建立线性SVM分类 191

    8.2.2 模型训练run方法 194

    8.2.3 权重优化计算 194

    8.2.4 线性SVM分类模型 196

    8.3 实例 199

    8.3.1 训练数据 199

    8.3.2 实例代码 199

    第9章 Spark MLlib决策树算法 202

    9.1 决策树算法 202

    9.1.1 决策树 202

    9.1.2 特征选择 203

    9.1.3 决策树生成 205

    9.1.4 决策树生成实例 206

    9.1.5 决策树的剪枝 208

    9.2 源码分析 209

    9.2.1 建立决策树 211

    9.2.2 建立随机森林 216

    9.2.3 建立元数据 220

    9.2.4 查找特征的分裂及划分 223

    9.2.5 查找最好的分裂顺序 228

    9.2.6 决策树模型 231

    9.3 实例 234

    9.3.1 训练数据 234

    9.3.2 实例代码 234

    第四部分 Spark MLlib聚类算法

    第10章 Spark MLlib KMeans聚类算法 238

    10.1 KMeans聚类算法 238

    10.1.1 KMeans算法 238

    10.1.2 演示KMeans算法 239

    10.1.3 初始化聚类中心点 239

    10.2 源码分析 240

    10.2.1 建立KMeans聚类 242

    10.2.2 模型训练run方法 247

    10.2.3 聚类中心点计算 248

    10.2.4 中心点初始化 251

    10.2.5 快速距离计算 254

    10.2.6 KMeans聚类模型 255

    10.3 实例 258

    10.3.1 训练数据 258

    10.3.2 实例代码 259

    第11章 Spark MLlib LDA主题模型算法 261

    11.1 LDA主题模型算法 261

    11.1.1 LDA概述 261

    11.1.2 LDA概率统计基础 262

    11.1.3 LDA数学模型 264

    11.2 GraphX基础 267

    11.3 源码分析 270

    11.3.1 建立LDA主题模型 272

    11.3.2 优化计算 279

    11.3.3 LDA模型 283

    11.4 实例 288

    11.4.1 训练数据 288

    11.4.2 实例代码 288

    第五部分 Spark MLlib关联规则挖掘算法

    第12章 Spark MLlib FPGrowth关联规则算法 292

    12.1 FPGrowth关联规则算法 292

    12.1.1 基本概念 292

    12.1.2 FPGrowth算法 293

    12.1.3 演示FP树构建 294

    12.1.4 演示FP树挖掘 296

    12.2 源码分析 298

    12.2.1 FPGrowth类 298

    12.2.2 关联规则挖掘 300

    12.2.3 FPTree类 303

    12.2.4 FPGrowthModel类 306

    12.3 实例 306

    12.3.1 训练数据 306

    12.3.2 实例代码 306

    第六部分 Spark MLlib推荐算法

    第13章 Spark MLlib ALS交替最小二乘算法 310

    13.1 ALS交替最小二乘算法 310

    13.2 源码分析 312

    13.2.1 建立ALS 314

    13.2.2 矩阵分解计算 322

    13.2.3 ALS模型 329

    13.3 实例 334

    13.3.1 训练数据 334

    13.3.2 实例代码 334

    第14章 Spark MLlib协同过滤推荐算法 337

    14.1 协同过滤推荐算法 337

    14.1.1 协同过滤推荐概述 337

    14.1.2 用户评分 338

    14.1.3 相似度计算 338

    14.1.4 推荐计算 340

    14.2 协同推荐算法实现 341

    14.2.1 相似度计算 344

    14.2.2 协同推荐计算 348

    14.3 实例 350

    14.3.1 训练数据 350

    14.3.2 实例代码 350

    第七部分 Spark MLlib神经网络算法

    第15章 Spark MLlib神经网络算法综述 354

    15.1 人工神经网络算法 354

    15.1.1 神经元 354

    15.1.2 神经网络模型 355

    15.1.3 信号前向传播 356

    15.1.4 误差反向传播 357

    15.1.5 其他参数 360

    15.2 神经网络算法实现 361

    15.2.1 神经网络类 363

    15.2.2 训练准备 370

    15.2.3 前向传播 375

    15.2.4 误差反向传播 377

    15.2.5 权重更新 381

    15.2.6 ANN模型 382

    15.3 实例 384

    15.3.1 测试数据 384

    15.3.2 测试函数代码 387

    15.3.3 实例代码 388

    资源截图:

    Spark MLlib机器学习:算法、源码及实战详解插图源码资源库

    猜你在找

    1. 本站所有资源来源于用户上传和网络,如有侵权请邮件联系站长!
    2. 分享目的仅供大家学习和交流,您必须在下载后24小时内删除!
    3. 不得使用于非法商业用途,不得违反国家法律。否则后果自负!
    4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解!
    5. 如有链接无法下载、失效或广告,请联系管理员处理!
    6. 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需!

    源码资源库 » Spark MLlib机器学习:算法、源码及实战详解